Quantifier Elimination for Trigonometric Polynomials by Cylindrical Trigonometric Decomposition
نویسندگان
چکیده
منابع مشابه
Approximation By Trigonometric Polynomials
These notes are prepared as lecture notes exclusively for the participants of this conference only. Any reproduction in any media, or any use for any other purpose of any part of this manuscript, without an expressed written consent of the author is unlawful.thorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conc...
متن کاملRearrangements of Trigonometric Series and Trigonometric Polynomials
Abstract. The paper is related to the following question of P. L. Ul’yanov: is it true that for any 2π-periodic continuous function f there is a uniformly convergent rearrangement of its trigonometric Fourier series? In particular, we give an affirmative answer if the absolute values of Fourier coefficients of f decrease. Also, we study a problem how to choose m terms of a trigonometric polynom...
متن کاملExtremal Positive Trigonometric Polynomials
There are various reasons for the interest in the problem of constructing nonnegative trigonometric polynomials. Among them are: Cesàro means and Gibbs’ phenomenon of the the Fourier series, approximation theory, univalent functions and polynomials, positive Jacobi polynomial sums, orthogonal polynomials on the unit circle, zero-free regions for the Riemann zeta-function, just to mention a few....
متن کاملNonnegative Trigonometric Polynomials
An extremal problem for the coefficients of sine polynomials, which are nonnegativein [0, π], posed and discussed by Rogosinski and Szegő is under consideration. An analog of the Fejér-Riesz representation of nonnegativegeneral trigonometric and cosine polynomials is proved for nonnegativesine polynomials. Various extremal sine polynomials for the problem of Rogosinski and Szegő are obtained ex...
متن کاملDiscrete Least Squares Approximation by Trigonometric Polynomials
We present an efficient and reliable algorithm for discrete least squares approximation of a real-valued function given at arbitrary distinct nodes in [0, 2tt) by trigonometric polynomials. The algorithm is based on a scheme for the solution of an inverse eigenproblem for unitary Hessenberg matrices, and requires only O(mn) arithmetic operations as compared with 0(mn ) operations needed for alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2000
ISSN: 0747-7171
DOI: 10.1006/jsco.1999.0352